Cross-modal object processing in three different anterior temporal regions

Julia Hocking1,2, Juliet Holdstock1,3, Cathy Price2,3
1MRI lab, Centre for Magnetic Resonance, University of Queensland
2Welcome Trust Centre for Neuroimaging, UCL, London
3School of Psychology, University of Liverpool, UK

BACKGROUND
- Functional brain imaging of normal subjects, as well as neuropsychological data, have demonstrated the critical role that the anterior temporal lobes play in object processing.
- Here, we investigate whether placing different demands on object discrimination processes in normal subjects differentially engages one or more of these anterior temporal regions.

METHOD EXPT 1: AUDIOVISUAL MATCHING
- 18 subjects were scanned with fMRI using a block design.
- Subjects responded to successively presented auditory and visual stimulus pairs with a match/no-match decision (key press). There were 6 presentations per block: 3 congruent and 3 incongruent, with 24 blocks in total.
- 108 stimuli from 3 object categories (animals, objects, musical instruments) were presented in 4 ways: pictures of objects, written names, environmental sounds, auditory names. This resulted in 2 different crossmodal conditions (written names & sound/visual names).
- To reduce the sensory differences between different types of stimuli, each meaningful stimulus was presented with a simultaneous meaningless stimulus in the opposite modality.

METHOD EXPT 2: TACTILE-VISUAL MATCHING
- 18 subjects were scanned with fMRI using a block design.
- Subjects responded to successively presented tactile and visual stimulus pairs with a match/no-match decision (foot movement). There were 6 presentations per block: 3 congruent and 3 incongruent, with 32 blocks in total.
- There were two types of stimuli: visual silhouette abstract shapes or a silhouette circle, and 2-dimensional wooden block shapes or spheres.
- Tactile stimuli were presented by the experimenters to either the left or the right hand of the subject. Visual stimuli were presented either left or right of a central fixation point. This resulted in four different combinations of cross-modal trials balancing left/right hand and left/right side of screen. A control circle/sphere was presented in the opposite hand/screen side in each trial.

ANALYSIS & CONTRASTS
- Data were pre-processed and analysed with SPM2 using standardised procedures.
- The contrast of interest from each experiment was the difference between activation for congruent versus incongruent trials.
- These two contrasts were combined in a second level ANOVA modelling the effect of congruency in the combined audiovisual (AV) crossmodal conditions and the combined tactile-visual (TV) crossmodal conditions. This ANOVA allowed us to test for the main effect of congruency and its interaction with experiment (AV versus TV).
- A small volume correction was used (sphere 12mm) in a region of interest based on the coordinates of peak atrophy in patients with semantic dementia.

CONCLUSIONS
- We have dissociated three functionally different anterior temporal regions, demonstrating different responses properties to perceptual and semantic inputs:
 1. The left temporal pole is involved in successful integration of input from distributed regions of modality-specific cortex and is engaged when inputs can be successfully combined into a perceptual or semantic 'whole', independent of meaning or the modality of input.
 2. In lateral temporal cortex, the lack of congruency effect during tactile-visual shape matching experiment suggests that this region is primarily concerned with conceptual processing, or not responsive to tactile input.
 3. In medial temporal cortex the contrasting effects suggest a different role in the object processing hierarchy: discrimination of a perceptual whole (higher activation for matching tactile visual inputs) and signalling a mismatch in conceptual inputs (higher for incongruent audiovisual matching).

REFERENCES